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CHAOS AND NONLINEAR DYNAMICS OF SINGLE-PARTICLE
ORBITS IN A MAGNETOTAIL-LIKE MAGNETIC FIELD

1. INTRODUCTION

It has long been realized that a complete understanding of the

properties of the earth's magnetotail requires an understanding of the

charged-paticle motion. The quiet-time magnetotail field may be modeled,

in its simplest form, by a neutral sheet magnetic profile B (z)x with a
A 0 -

superimposed normal field Bnz (the so-called "quasi-neutral sheet"

geometry). Figure 1 gives a schematic drawing of such a magnetic

configuration and the coordinate system. A considerable amount of work

already exists, dealing with a number of specialized aspects of the

particle motion. The methods used include approximate analytical methods

(Speiser, 1965; Alexeev and Kropotkin, 1970; Sonnerup, 1971; Stern and

Palmadesso, 1975; Pellat and Schmidt, 1979) and numerical methods (Speiser,

1967; Cowley, 1973; Eastwood, 1972; Swift, 1977). More recently, Wagner et

al. (1979) performed a numerical study encompassing the previously studied

orbits.

In all of the previous works, the underlying implicit concept is that

the particle motion in a quasi-neutral sheet is ultimately regular and

integrable. In this paper, we demonstrate that charged-particle motion in

a quasi-neutral sheet is nonintegrable because of the normal magnetic field

component. Recent developments in nonlinear dynamics (see, for example,

Lichtenberg and Lieberman, 1983) have led to important and novel insights

into the physical properties of dynamical systems. For the system of

interest here, i.e. the magnetotail, we find that the phase space structure

of the particle orbits can yield important information regarding the long-

time plasma properties of the system not available via the conventional

approach. For example, we find that particle motions can be classified

into three distinct major types of orbits; the bounded integrable orbits,

unbounded stochastic orbits and unbounded transient orbits. The existence

of distinct classes of orbits has profound effects on the plasma particle

distribution and on the response of the magnetotail to external influences.

Manuscript approved July 30, 1985.
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Moreover, the distribution and character of the charged-particle

orbits can have a significant impact on other dynamical properties of the

magnetotail. One important example is the tearing-mode instability (Furth,

1962; Pfirsch, 1962; Laval et al., 1966) which has long been thought to

*play an important role in magnetic field reconnection (Coppi et al, 1966;

Schindler, 1966). It has recently been shown that the theoretically

predicted growth rates of the collisionless tearing instability can be

increased dramatically by the presence of temperature anisotropy or other

"- non-Maxwellian features in the particle distribution (Chen and Palmadesso,

* 1984; Chen et al., 1984; Chen and Lee, 1985). In particular, the growth

rate can be enhanced in excess of a few orders of magnitude and the

wavelengths of the fastest growing modes are shortened significantly. As

will be seen in the following sections, there is a close connection between

the topology of the magnetotail magnetic field and the properties of

particle distribution functions which can persists in the tail for more

than a few transit times. A fundamental question, then, is whether the

-- magnetotail can sustain free-energy carrying non-Maxwellian features that

can support large-scale instabilities of potential relevance to magnetotail

dynamics, such as the anisotropic collisionless tearing mode. Thus, it is

desirable to gain a better understanding of the way in which magnetic field

topology affects magnetotail particle distribution functions.

The treatment given in this paper is applicable to both ions and

* electrons. However, we will primarily refer to the ion motion for

" illustration. The modifications needed for electrons are trivial. The

emphasis of the paper will be on the physical properties, rather than the

mathematics.

II. The Model

In order to model the motion of charged particles In the magnetotail,

we consider a magnetic field given by B - Bof(z)x B nZ, where B0 is the

asymptotic field in the x direction, Bn is the uniform normal field and

* Bof(z) Is a neutral sheet profile such that f(-z) - -f(z). In this paper,

*i we primarily use the Harris configuration (see, for example, Wagner et al.,

1979)

f(z) - tanh(z/8), (1)

2
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where 6 is the characteristic scale length of the magnetic field. This

field configuration and the coordinate system are schematically shown in

Figure 1. For convenience, we also use s to indicate the distance from the

z = 0 plan along field lines; parallel to B, we have s + +- as z + +-,

and, anti-parallel to B, we have s + -- as z + --. The treatment is also

applicable to other quasi-neutral sheet configurations and another example,

f(z) = z/6, will be discussed.

We choose the gauge such that the vector potential is

A (x,z) - B F(z) B x
y 0 n

where dF(z)/dz f(z). For the model field of equation (1),

F(z) - Sin[cosh(z/S)].

The single-particle motion is described by the equation of motion

dv
- .v x B (2)

This vector equation possesses three exact constants of motion; the22 2 2 2
Hamiltonian H - mv/2 where v2  v2 + V 2 v2 canonical momentum P

x vthe Py
= mVy + (q/c)Ay(x,z) and a constant Cx m(vX y) associated with the

x-motion. In this paper, we will use 0n a qB n/me and a 0 qB /mc for

each species. However, we note the following previously unrealized but

important property. If we consider the Poisson brackets of the constants

of motion, we find [H, P J 0 and [H, CJ]  0, as they should be.y x
However, for Cx and Py, we find

[Cx y] = -ma

so that Cx and Py are not in involution. Thus the system is likely to

possess nonintegrable, stochastic orbits. This is in fact the case as will

be demonstrated in this paper. As a general remark, this conclusion is due

to the existence of the normal magnetic field component in the null region

and is not limited to the particular choice of equation (1) or the gauge.
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We first consider a number of general properties of the particle

motion. It is easy to show that the motion in the x-z plane can be

". described by an effective potential given by

r(x, z) [ yx z)]2 , (L1

so that md 2x/dt - - ar/ax and md 2z/dt = -ar/az. It is also easy to see

that the magnetic field lines and the constant - r lines have the same

geometrical shapes in the x-z plane (see Figure 1).

It is convenient to express equation (2) in the dimensionless

component form:

d2X dY (5)

Td'd2. d 2

d2 - {b ln[cosh(b Z)] X1} (6)dT2 dt n

and

-d2Z -1 dnb tanh(b Z)- (7)
2 n n dT

where the normalized variables are b i B /3 , X - (x - P /ma )/b 6,
n no' y n n

Y - (y + Cx/mln)/bn6 , Z a Z/bn6 and T - nt. The normalized Hamiltonian is

then H - H/(mbn 6 2). If we use the magnetic field f(z) - z/6, the ratio bn

can be normalized away completely, indicating that all parabolic field

* lines can be scaled to any other parabola. In general, a solution of

equations (5) - (7) represents a set of orbits corresponding to different

choices of Py and C ..

The above system of equations (5)-(7) is invariant under the

replacement Z * - Z. In addition, the system also remains invariant under

the simultaneous replacement Y * -Y and T * -T. Because of energy

conservation, the normalized velocity components V a dX/dr, V a dY/drx 1 / 2 ; ) 1 / 2 .
and Vz n dZ/d are limited to the range of -(2H) to +(2 . In

" addition, the coordinate Y is limited to IYI S (2H)1 2 and X ranges

from bn2ln[cosh(b Z)] - (2H)1 /2 to b2 ln[cosh(b Z)] + (2H)1 /2 at any givenn n n nZ. However, for a given orbit, X and Z need not be limited.

4
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Further insight inito the particle motion is obtained by considering

small oscillations (Izi << 6) about Z = 0. The z-motion can then be

described by the Mathieu equation:

2
d2 [ -(2H)I/"2cos (t)]Z O . (8) %

d 2

This shows that the small oscillation motion can be stable or unstable

depending only on H. Most small oscillations turn out to be unstable. We

note that stable small oscillation manifests itself as essentially

magnetized, integrable orbits. As an example, we find H C 0.10 corresponds

to stable oscillations about Z 0.

III. RESULTS

The system of equations (5)-(7) is solved by numerical integration. A

useful technique for displaying the long-time properties of the particle

motion is to use the Poincare surface of section method (see, for example,

Lichtenberg and Lieberman, 1983). Figure 2(a) shows the surface of section

plot for H = 500 and bn - 0.1, evaluated at Z - 0. All kinematically

allowable orbits are confined within the circle of (2H) Each point

represents the coordinates X and X dX/dt at the point where the orbit

crosses the Z = 0 plane. Since a given point at Z - 0 corresponds to two

orbits, one with Z > 0 and the other with Z < 0, which are mirror images of

each other, crossings from both above and below the Z - 0 plane are

included. The regions C1 through C5 are, of course, fully populated with

orbits and they will be discussed in the following paragraphs.

The orbits in the region marked A are bounded and integrable. Several

sample integrable orbits are indicated. Evidently, there is a third

independent constant of motion in this region. In the present system, an

integrable orbit densely covers a two-dimensional hypersurface whose cross-

section through Z = 0 is represented by a closed curve. In the absence of

any noise, the orbit remains on the hypersurface indefinitely. The figure

also clearly demonstrates that there is a large stochastic region, marked

%



"a

B, where the orbits are sensitive to the initial condition. The stochastic

region is disjoint from the integrable region A; that is, there is no orbit

*that can connect the two regions.

The model system described by equation (1) is unusual in that all non-

"- integrable orbits eventually escape to infinity so that the stochastic

. region is actually covered by infinitely many orbits, each one crossing the

Z - 0 plane a finite number of times. The non-integrable orbits may be

thought of as originating from infinity and escaping to infinity. However,

" region B cannot be accessed from infinity directly. All orbits at infinity

that can reach Z = 0 are mapped into region C1. The orbits then

successively cross regions C2 through C5. After crossing C5, some orbits

* enter the stochastic region B. That is, region B can only be accessed from

. region C5. The regions C1 through C5 in turn have interesting

substructures, as shown in Figure 2(b). The orbits in Ci ootween regions

Si and TI are those which originate from infinity, successively re-cross

the plane in regions C2, C3, C4 and C5. From C5, they escape to

infinity. The orbits in the small region to the left of T 1 also re-c'o~s

the plane in regions C2, C3 and C4, above T2, T3 and T4, respectively, but

they escape to infinity from the subregion of C4 above T4. These orbits

*which will be referred to as transient orbits do not exhibit noticeable

*' stochastic behavior. Only orbits of this type are shown in Figure 2(b).

An orbit entering SI makes successive crossings in regions S2 through

S5, from which it enters region B where it makes a finite number of

. crossings. It then enters one of the hashed regions before escaping to

infinity. Orbits in TI behave in a similar manner. All orbits in region B

* eventually wonder into the hashed regions and escape. We emphasize that no

orbit enters regions C1 through C5 from the stochastic region B. Needless

* to say, the integrable region cannot be accessed from infinity. Thus, in

the coordinates X, Y, and Z, one can visualize the orbits as forming two

flux tubes, one from +- and the other from -m which are mirror images of

each other. The bulk of each flux tube, consisting of transient orbits,

. simply threads the neutral plane (Z - 0) and extends to infinity. The

* orbits in the two regions of the flux tube corresponding to SI and Ti

.* separate from the flux tube, execute stochastic motion in region B and

rejoins the flux tube through the hashed regions. Before entering C5 or

6



after leaving the hashed regions, the orbits do not exhibit noticeable

- stochastic behavior. Indeed, in traversing the system via C1 through C5,

" transient and stochastic orbits are similar in appearance. Note that the

* different types of orbits spend significantly different lengths of time in

* the vicinity of the neutral plane before escaping to infinity.

Similar structures exist in the surfaces of section for different

values of H. Figure 3(a) shows the plot for H - 50. The "blank" regions

are analogous to the regions C1 through C5 of Figure 2(a), containing

structures similar to those described in Figure 2(b). In Figure 3(b), we

show the surface of section plot for H = 7. In general, as the value

of H is reduced, large-scale integrable regions become more fragmented and

complicated. For H < 6.2, large integrable regions vanish and essentially

all orbits are of the stochastic or the transient types. However, there

may be small-scale integrable regions not resolvable in these figures.

Figure 3(c) shows the plot for H - 0.25. In this case, the transient

orbits cross the Z = 0 plane only once. In Figure 3(d), we show the

surface of section for H =1.184xi0 2. In this case, the orbits near the

outer edge of the circle execute small oscillations in the Z direction as

described by equation (8). This value of H corresponds to stable

oscillation. Thus, these orbits are essentially integrable and adiabatic

as shown by the figure. Closer in to the center of the circle, the small

oscillation approximation evidently breaks down and the motion is

stochastic. In general, as the value of H is decreased, larger fractions

of the allowed surfaces of section will be occupied by the adiabatic orbits

executing small oscillations. Note that, for any H , the outer most

allowable orbit, i.e., X2 + X2 = 2H, has Z 0 and is an integrable orbit.

It is possible to estimate the number of times the flux tube crosses

the Z = 0 plane. The orbits in the flux tube have the typical orbital size
1/2given by d i (2pd) near Z = 0 (Chen and Palmadesso, 1984; Chen et al.,

1984) where p is the Larmour radius of a particle with the Hamiltonian H in

the field BO . Then, it is easy to show

d (8b4A 1/4!

1/2Since the Y-range is limited to (2H) I/  we see that there should be

7



N - (H/2) + ,(9)

where N is the number of crossing points for a given value of H. Here, N

* is to be understood as an integer. For example, if H = 500 , then N = 5 as

shown by Figure 2(a). For H - 7, we have N = 2. For H << 2 , N must

remain equal to unity. We have found the formula to be accurate for a wide

range of H, although it tends to underestimate the actual number of

crossings slightly for very high values of H. Note that the number of

crossings for stochastic orbits can range from a few crossings to hundreds

of crossings, corresponding to a wide range of time the orbits spend in the

vicinity of the Z = 0 plane.

At the center of an integrable region is a fixed point, which is

mapped into itself after a finite number of iterations of the mapping,

equations (5) - (7). A fixed point occurring on the axis X = 0 is mapped

into itself by each iteration of the mapping. For example, for H = 500

(Figure 2(a)), a fixed point occurs at X = 22.591 and X = 0 . Figure 4(a)

provides a three-dimensional drawing of the orbit. Fixed points occurring

off the axis have higher periods and the orbits cross Z = 0 more than

once. Another type of orbits of interest are of the transient type.

*. Figure 4(b) gives a drawing of the orbit which crosses region CI at X = 0

* and X = -26 (see Figure 2(a)).

From the symmetry properties of equations (5) - (7), it is easy to

show that a fixed-point of any orbit is symmetric about Y = 0 because it

closes onto itself. In addition, orbits associated with fixed points

on X = 0 are also symmetric about Z - 0. Moreover, it can be shown that

the integrable regions (Z = 0) are symmetric about X - 0 (i.e., Y - 0).

The integrable orbits themselves, however, are not symmetric except for the

fixed-point orbits.

In Figure 5, we show a surface of section plot for the field

configuration given by f(z) = z/5. In this system, all the field lines are

parabolic and the ratio bn can be scaled away completely from the equation
n

of motion. In this figure, H - 500 and the plot shows features similar to

. those in Figure 2(a). The plots corresponding to other values of H in

Figures 3(a) - 3(d) also have similar features. The primary difference of

8
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this system with the Harris-type system (equation (1)) is that the field

lines remain parabolic for all Z so that essentially all orbits are

eventually reflected. In constructing this plot, we have imposed an

artificial cutoff condition in order to limit computing time, typically

corresponding to T of the order of 5000 and maximum Z of roughly 300. As

the cutoff time is increased, reflection from greater maximum Z is included

and the "blank" regions decrease in size. In the limit of infinite cutoff

time, we believe that each "blank" region diminishes to a point

corresponding to the orbit that can indeed reach infinity for each value

of H. These orbits are somewhat analogous to the trajectories passing

through the origin of a dipole field (Stormer, 1955). The stochastic

.. region is then covered by a single orbit and the parabolic system contains

no true loss-cone. However, the orbits can extend to large Z values so

that a given orbit in this phase of its motion may be regarded as having

escaped the system for all practical purposes. For the parabolic field

case, the large integrable regions also vahish for H < 6.2 as in the

Harris-type case.

It is possible to understand the previous results in a more unified

fashion. Wagner et al. (1979), the most comprehensive of the previous

studies, examined only a small number of possible orbits for certain values

of the normalized Hamiltonian: H - 0.005, 0.0118, 0.5, and 5000. The

surface of section technique describes all possible orbits for each value

of H. Wagner et al. (1979) also noticed that, for certain initial

conditions, neighboring initial orbits can diverge rapidly. In view of the

present work, we now understand this sensitive dependence on initial

conditions as a typical property of stochastic motion. Swift (1977) also

noted that some orbits appeared to randomize in the Z - 0 plane after a few

* crossings. This is also typical of stochastic orbits such as those shown

" in Figures 2 and 3. Our present work provides a more complete

understanding of the fundamental nature of the particle motion in the

quasi-neutral sheet geometry.

IV. DISCUSSION AND PHYSICAL IMPLICATIONS

A prominent and hitherto unrealized feature is the existence of three

distinct and disjoint regions in the phase space, each region consisting of

9
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.. orbits of distinct nature; (1) bounded integrable orbits, (2) unbounded

" stochastic orbits and (3) unbounded transient orbits. This behavior is a

"" consequence of the fact that, due to the presence of the z-component of the

magnetic field, the system does not possess three global constants of

motion which are in involution. We have presented surface of section plots

* to describe the long-time properties of particle orbits. The various

' distinct regions of the phase space for two model systems have been

discussed in detail. The ergodic hypothesis is false for the magnetotail-

* like field configuration. We have also identified the flux-tube structure

-" showing the manner in which different regions of the phase space are

connected to infinity. One unique feature of the Harris-type system is

that all non-integrable orbits extend from infinity to infinity via the Z =

0 plane. Therefore, the stochastic regions consist of infinitely many

orbits, each having measure zero. For the parabolic field, no loss-cone

appears to exist and one orbit can cover the stochastic region. However, a

stochastic orbit can extend to large distances (IZI >> 6 ) so that, for all

practical purposes, it can reach the external regions. In a physical

'- system such as the magnetotail, the "external" regions may include the

* magnetopause or the ionosphere.

As described earlier, the transient orbits do not exhibit significant

stochasticity. Two adjacent orbits remain adjacent and two adjacent

neighborhoods of transient orbits remain adjacent but disjoint. This

implies that the transient orbits can carry information from the distant

- regions. The time a transient orbit spends in the vicinity of the Z - 0

* plane is roughly proportional to TIa ( 1 /4) . The stochastic orbits

* separate from the transient orbits after finite numbers of crossings,

- covering the stochastic regions. Thus, the information carried from

infinity is randomized after a few crossings. The integrable regions are,

of course, not connected to infinity.

Based on the new understanding of the nature of particle orbits in the

magnetotail-like field configuration, we suggest the following scenario.

Suppose the system contains a population of charged particles in thermal

(i.e. Maxwellian) equilibrium. In the absence of noise fields, the

different types of orbits remain distinct. There must also be a steady

supply of particles in the distant regions to maintain equilibrium. If the

10



parameters of the distant plasma distribution are changed, then the fact

the orbits are divided into distinct types belonging to disjoint regions of

the phase space results in a highly non-Maxwellian distribution: After

reaching the plane, the particles in the transient-orbit regions replace

the existing distribution of particles, thus erasing the memory of the

initial distribution on the time scale proportional to TI. For the

stochastic orbits, the memory of the initial distribution and the

information regarding the new external conditions are randomized on the

time scale corresponding to several crossings of the plane. The integrable

orbits carry the memory of the initial distribution indefinitely as long as

the magnetic field remains unchanged. Thus, the three distinct regions

respond to changes with different processes and time scales. If noise

fields are introduced, then mixing of different regions can occur on yet

another time scale, which depends on the amplitudes of the noise fields.

We refer to the above process as "differential memory". Clearly, the new

distribution is highly non-Maxwellian. The phase space structures as shown

by the surface of section plots provide specific clues regarding how the

changes in the external regions affect the distributions in the quasi-

neutral sheet.

In the context of the earth's magnetotail, it is believed that the

collisionless tearing instability may play an important role in

reconnection processes. In the usual consideration based on an Isotropic

neutral sheet, the growth rate is found to be slow in comparison with the

relevant time scales such as the time delay which precedes the onset of

substorms. However, it has recently been shown (Chen and Palmadesso, 1984;

Chen and Lee, 1985) that the growth rate of the collisionless tearing mode

in anisotropic or non-Maxwellian neutral sheets can be substantially

greater, by a few orders of magnitude, than in the isotropic case due to

the mirror forces which are exactly cancelled in an isotropic

distribution. Based on the findings of the present work, we consider the

possible influence of particle dynamics on the plasma dynamics. If the

magnetotail initially in thermal equilibrium is subjected to changes in

external conditions, e.g., conditions of IMF, magnetopause, etc., then the

discussion above suggests that the magnetotail plasma may develop non-

Maxwellian features which can render the magnetotail plasma strongly

unstable to the collisionless tearing instability. This process may

Z/.
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manifest itself as rapid reconnection following changes in IMF

conditions. We add, however, that the above discussion does not take into

account the possible stabilizing influence of the normal magnetic field on

the instability itself under certain circumstances (Lembege and Pellat,

1982). This point warrants further consideration and will be addressed in

a separate paper.

As we have seen, the particle distribution in the tail-like system is

determined by many complicated dynamical properties of particle motion. In

this regard, it is important and informative to realize the distinct nature
of the three regions in the phase space. Suppose an observer measures the

properties of a distribution of particles at some point in a system such as

the model system. It is then possible to construct an inverse mapping from

[i the observation to the phase space and identify the type and nature of the

orbits. Thus, the surface of section plots may be helpful in organizing

observational results.

Finally, we point out that the above results and discussions are based

on single-particle motion. In order to determine more quantitavely the

nature and associated time scales of these processes, it is necessary to

follow an ensemble of particles. This work is currently underway.
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Fig. 1. Schematic drawing of the Harris-type magnetic field (equation (1))

and the coordinate system. The line segment s measures the

distance from Z -0 along the magnetic field lines.
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and H - 500. (a) Representative integrable orbits in region A and

* stochastic orbits In region B. 60000 points. (b)Transient orbits,

* showing the substructures in regions C1 through C5. 42000 points.

* 14

-- ..0.~ *



H50 -

x

(a) H 7 5

Fi.3.Srac fsetonpos. Teplt ho 000t 600pons

I A-"v



H0.25

'I.2

x
(d) H I 8 0.25

Fig. ~ ~ -3..01 (Cotd Sufc ofscinpos- h lt hw400t 00

poits

I 16



z

Fig. 4. Three-dimensional displays of' selected orbits for H -500 and b~

0.1 (see Figure 2(a)). (a) A fixed point orbit corresponding to X

-22.591 and X - 0. The X - Y - axes have been expanded by

factors of' 10 and 2, respectively. (b) A transient orbit

corresponding to X - 0 and X -- 26. The Z -axis has been

expanded by a factor of' 1.2.
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Fig. 4. Cont'd Three dimensional displays of selected orbits for H-500

and bn -0.1 (see Figure 2(a)). (a) A fixed point orbit

corresponding to X -22.591 and X -0. the X and Y -

axes have been expanded by factors of 10 and 2,

respectively. (b) A transient orbit corresponding to X -

0 and X -- 26. The Z -axis has been expanded by a factor

of 1.2.
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